
Program Analysis Techniques for Efficient Software Model Checking

Final Report
AFOSR Grant FA9550-07-1-0077

Program Manager: Robert L. Herklotz

PI: Chandrasekhar Boyapati Co-PI: Karem Sakallah

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor, MI 48109

{bchandra, karem} ©eecs.umich.edu

Abstract

The need to build next generation air force systems with highly complex functions, but at rela-
tively low cost, will inevitably means a major investment in software. Without highly reliable
software, any ambitious air force program cannot succeed. Indeed, software is the keystone (or
perhaps the Achilles heel) of most large-scale automation projects; and the problem of making
software reliable has become one of today's most important technological challenges.

To address this problem and to improve software reliability, we designed novel program analy-
sis techniques that significantly speed up software model checking, thereby enabling the check-
ing of much larger programs and broader class of program properties than previously possible.

In particular, we developed a software model checker for efficiently checking data oriented
programs with respect to complex data dependent properties. We used our model checker for
checking programs that use linked data structures such as lists, queues, trees, and maps. Veri-
fying such programs has often been an obstacle to progress in the past and is a key underlying
technical challenge in software verification. Because these programs have complex data depen-
dent properties, the state space reduction techniques (such as predicate abstraction or partial
order reduction) used by other model checkers are largely ineffective on such programs. Our
model checker uses novel techniques to achieve orders of magnitude state space reduction.

In addition, we also developed a novel trace driven approach to use counter example guided
abstraction refinement (CEGAR) to check for concurrency errors in multithreaded programs.

1 Introduction ^öUO^l^l^O

Context

The motivation behind this lesearcn is uie rieeu tor renaoie anu secure sonware. software has
become pervasive in civilian and military infrastructure. All activities including transportation,

telecommunications, energy, medicine, and banking rely on the correct working of software sys-
tems. Consequently, the problem of making software reliable and secure has become one of to-
day's most important challenges. Multi-hundred-million-dollar space projects are interrupted by
software glitches, power-grid failures are caused by bugs in software, and new security exploits
are announced daily. Software reliability is crucial in critical systems, where failures can lead
to loss of life—with risks ranging from a few individuals (anti-lock braking systems and airbag-
deployment systems) to a few hundred (aircraft collision-avoidance systems) to tens of thousands
(nuclear reactors and weapons systems). Software reliability also impacts security because buggy
code underlies most security violations and progress in making systems more reliable will almost
certainly make them more resistant to deliberate attack as well. Moreover, software reliability has
a significant impact on economy. Studies estimate that bugs in software cost businesses worldwide
about $175 billion [40] annually. Improving software reliability and security is thus essential and
better tools and technologies are needed for identifying bugs and vulnerabilities in programs.

Air Force Context

The need to build the next generation autonomous and semi-autonomous air force systems with
highly complex functions, but at relatively low cost, will inevitably mean a major investment in
software. Already, software accounts for more than 60% of the cost of air force systems, and
the cost of verification and validation of software sometimes comprises over 50% of the software
development cost. These percentages will be even higher if the next generation systems are built
using current software development and verification technologies because of the increase in the
size and complexity of the software due to added functionality. But without highly reliable soft-
ware, any ambitious defense program cannot succeed. Indeed, software is the keystone (or perhaps
the Achilles heel) of most large-scale automation projects. One cannot over-emphasize the impor-
tance of this issue, especially in view of the reliability/delays/budget-overrun problems that have
occurred in highly visible DoD projects, such as F/A-22 and SBIRS-HIGH.

Approach and Outline

Our research improves software reliability and security by enhancing the state of art in soft-
ware model checking, thereby enabling the checking of much larger programs and broader class
of program properties than previously possible. The rest of the report summarizes the main
contributions of our research. More details about our research can be found in our publica-
tions [13, 37, 38, 39, 45, 46, 47] and a forthcoming Ph.D. thesis [36].

2 Glass Box Software Model Checking

Model checking is a formal verification technique that exhaustively tests a circuit/program on all
possible inputs (usually up to a given size) and on all possible nondeterministic schedules. For
hardware, model checkers have successfully verified fairly complex finite state control circuits
with up to a few hundred bits of state information; but not circuits in general that have large
data paths or memories. Similarly, for software, model checkers have primarily verified control-
oriented programs with respect to temporal properties; but not much work has been done to verify
data-oriented programs with respect to complex data-dependent properties.

Thus, while there is much research on software model checkers [2, 4, 7, 10, 11, 16, 18, 41, 21,
30] and on state space reduction techniques for software model checkers such as partial order
reduction [17, 18] and tools based on predicate abstraction [19] such as Slam [2], Blast [21], or

Magic [7], none of these techniques seem to be effective in reducing the state space of data-oriented
programs. For example, predicate abstraction relies on alias analysis that is too imprecise.

To address this problem, we introduced glass box software model checking. Our checker incor-
porates novel techniques to identify similarities in the state space of a model checker and safely
prune large numbers of redundant states without explicitly checking them. Thus, while traditional
software model checkers such as Java PathFinder (JPF) [41] and CMC [30] separately check ev-
ery reachable state within a state space, our glass box checker checks a (usually very large) set of
similar states in each step. This leads to orders of magnitude speedups over previous approaches.

Consider checking that a red-black tree [12] implementation maintains the red-black tree invari-
ants. Previous model checking approaches such as JPF [41, 26], CMC [30], Korat [4], or Al-
loy [22, 25] systematically generate all red-black trees (up to a given size n) and check every
red-black tree operation (such as insert or delete) on every red-black tree. Since the number of
red-black trees with at most n nodes is exponential in n, these systems take time exponential in n
for checking a red-black tree implementation. Our system works as follows. Our checker detects
that any red-black tree operation such as insert or delete touches only one path in the tree from
the root to a leaf (and perhaps some nearby nodes). Our checker then determines that it is sufficient
to check every operation on every unique tree path (and some nearby nodes), rather than on every
unique tree. Since the number of unique red-black tree paths is polynomial in n. our checker takes
time polynomial in n. This leads to orders of magnitude speedups over previous approaches.

In general, our system works as follows. Consider checking a file system implementation, as an-
other example. As our checker checks a file system operation o (such as reading, writing, creating,
or deleting a file or a directory) on a file system state s, it uses its analyses to identify other file
system states sf

lf s'2,..., s'k on which the operation o behaves similarly. Our analyses guarantee that
if o executes correctly on s, then o will execute correctly on every .$[. Our checker therefore does
not need to check o on any s[once it checks o on s. It thus safely prunes those state transitions
from its search space, while still achieving complete test coverage within the bounded domain.

We call this the glass box approach to software model checking because our checker analyzes the
behavior of an operation to prune large portions of the search space. We tested our system on a
variety of programs and compared our system to other state of the art model checkers including
Blast [21], JPF [41], and Korat [4]. We found that our system is significantly more efficient for
checking data-oriented programs and data-dependent properties.

Note that like most model checking techniques [4, 16, 18, 41, 30], our system (in effect) exhaus-
tively checks all states in a state space within some finite bounds. While this does not guarantee
that the program is bug free because there could be bugs in larger unchecked states, in practice,
almost all bugs are exposed by small program states. This conjecture, known as the small scope
hypothesis, has been experimentally verified in several domains [23, 29, 34]. Thus, exhaustively
checking all states within some finite bounds generates a high degree of confidence that the pro-
gram is correct (with respect to the properties being checked).

Compared to our system, formal verification techniques that use theorem provers [3, 24, 32] are
fully sound. However, these techniques require significant human effort (in the form of loop in-
variants or guidance to interactive theorem provers). For example, an unbalanced binary search
tree implemented in Java can be checked in our system with less than 20 lines of extra Java code,
implementing an abstraction function and a representation invariant. In fact, it is considered a good

programming practice [28] to write these functions anyway, in which case our system requires no
extra human effort. However, checking a similar program using a theorem prover such as Coq [3]
requires more than 1000 lines of extra human effort.

Compared to our system, other model checkers are more automatic because they do not require
abstraction functions and representation invariants. However, our system is significantly more
efficient than other model checkers for checking certain kinds of programs and program properties.

We present glass box software model checking as a middle ground between automatic model
checkers and program verifiers based on theorem provers that require extensive human effort.

More details on this research can be found in [13].

3 Modular Glass Box Software Model Checking

To further improve the scalability of glass box software model checking, we introduced PlPAL, a
system for modular glass box software model checking. In a modular checking approach program
modules are replaced with abstract implementations, which are functionally equivalent but vastly
simplified versions of the modules. The problem of checking a program then reduces to two tasks:
checking that each program module behaves the same as its abstract implementation, and checking
the program with its program modules replaced by their abstract implementations [9].

Extending traditional model checking to perform modular checking is trivial. For example, Java
PathFinder (JPF) [41] or CMC [30] can check that a program module and an abstract implementa-
tion behave the same on every sequence of inputs (within some finite bounds) by simply checking
every reachable state (within those bounds).

However, it is nontrivial to extend glass box model checking to perform modular checking, while
maintaining the significant performance advantage of glass box model checking over traditional
model checking. In particular, it is nontrivial to extend glass box checking to check that a module
and an abstract implementation behave the same on every sequence of inputs (within some finite
bounds). This is because, unlike traditional model checkers such as Java PathFinder or CMC,
our glass box model checker does not check every reachable state separately. Instead it checks a
(usually very large) set of similar states in each single step. Our research solves this problem.

We tested PlPAL on a variety of programs. Our experiments indicate that the modular model
checking technique is far more efficient than checking programs as a unit.

More details on this research can be found in [37].

4 Glass Box Software Model Checking of Soundness of Type Systems

In addition to checking program properties, we also used our system on an orthogonal but interest-
ing problem—of automatically checking soundness of type systems.

Type systems provide significant software engineering benefits. Types can enforce a wide variety
of program invariants at compile time and catch programming errors early in the software devel-
opment process. Types serve as documentation that lives with the code and is checked throughout
the evolution of code. Types also require little programming overhead and type checking is fast
and scalable. For these reasons, type systems are the most successful and widely used formal
methods for detecting programming errors. Types are written, read, and checked routinely as part

4

of the software development process. However, the type systems in languages such as Java, C#,
ML, or Haskell have limited descriptive power and only perform compliance checking of certain
simple program properties. But it is clear that a lot more is possible. There is therefore plenty
of research interest in developing new type systems for preventing various kinds of programming
errors [6, 14,20.31,42].

A formal proof of type soundness lends credibility that a type system does indeed prevent the
errors it claims to prevent, and is a crucial part of type system design. At present, type soundness
proofs are mostly done on paper, if at all. These proofs are usually long, tedious, and consequently
error prone. There is therefore a growing interest in machine checkable proofs of soundness [1].
However, both the above approaches—proofs on paper (e.g., [15]) or machine checkable proofs
(e.g., [33])—require significant manual effort.

Our research presents an alternate approach for checking type soundness automatically using a
software model checker. Our idea is to systematically generate every type correct intermediate
program state (within some finite bounds), execute the program one small step forward if possible
using its small step operational semantics, and then check that the resulting intermediate program
state is also type correct—but do so efficiently by detecting similarities in this search space and
pruning away large portions of the search space. Thus, given only a specification of type correct-
ness and the small step operational semantics for a language, our system automatically checks type
soundness by checking that the progress and preservation theorems [35, 44] hold for the language
(albeit for program states of at most some finite size).

Our experimental results on several languages—including the language of integer and boolean
expressions from [35, Chapters 3 & 8], a typed version of the imperative language IMP from [43,
Chapter 2], an object-oriented language which is a subset of Java, and a language with ownership
types [5, 8]—indicate that our approach is feasible and that our search space pruning techniques
do indeed significantly reduce what is otherwise an extremely large search space. Our research
thus offers a promising approach for checking type soundness automatically, thereby enabling
the design of novel type systems. In particular, this can enormously help programming language
designers in debugging their language specifications. Currently there is no other technology around
to automate this task effectively.

More details on this research can be found in [38].

5 Model Checking Multithreaded Programs Using Counter Example Guided
Abstraction Refinement

Making multithreaded programming easier and less error-prone is an area of growing interest be-
cause of the increasing availability of inexpensive multicore hardware. In addition to the glass
box software model checking, we also developed a novel approach to use counter example guided
abstraction refinement or CEGAR [27] to check for concurrency errors in multithreaded programs.
CEGAR creates and checks an abstraction of a program to reduce the state space. Abstractions
that are too coarse generate counter examples. CEGAR uses them to refine the abstraction and
redo the checking. We developed an efficient symbolic encoding of multithreaded programs and a
novel trace driven abstraction and refinement approach to check their execution.

More details on this research can be found in [39, 45, 46, 47].

References

[1] B. E. Aydemir et al. Mechanized metatheory for the masses: The POPLMARK challenge.
May 2005. http://www.cis.upenn.edu/ plclub/wiki-static/poplmark.pdf.

[2] T. Ball, R. Majumdar. T. Millstein, and S. K. Rajamani. Automatic predicate abstraction of
C programs. In Programming Language Design and Implementation (PLDI), June 2001.

[31 Y. Bertot and P. Casteran. Interactive Theorem Proving and Program Development. Springer
verid0, ZAA)**.

[4] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing based on Java predi-
cates. In International Symposium on Software Testing and Analysis (ISSTA), July 2002.

[5] C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In Princi-
ples of Programming Languages (POPL), January 2003.

[6] C. Boyapati and M. Rinard. A parameterized type system for race-free Java programs. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), October
2001.

[7] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. Modular verification of software compo-
nents in C. In International Conference on Software Engineering (ICSE), June 2003.

[8] D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), October
1998.

[9] E. M. Clarke, E. A. Emerson, and J. Sifakis. Model checking: Algorithmic verification and
debugging. Communications of the ACM (CACM) 52(11), 2009.

[10] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[11] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and H. Zheng. Ban-
dera: Extracting finite-state models from Java source code. In International Conference on
Software Engineering (ICSE), June 2000.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
1991.

[13] P. Darga and C. Boyapati. Efficient software model checking of data structure properties. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), October
2006.

[14] R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-level software. In Pro-
gramming Language Design and Implementation (PLDI), June 2001.

[15] S. Drossopoulou and S. Eisenbach. Java is type safe—probably. In European Conference for
Object-Oriented Programming (ECOOP), June 1997.

6

[16] M. Dwyer, J. Hatcliff, M. Hoosier, and Robby. Building your own software model checker us-
ing the Bogor extensible model checking framework. In Computer Aided Verification (CAV),
January 2005.

117] C. Flanagan and P. Godefroid. Dynamic partial-order reduction for model checking software.
In Principles of Programming Languages (POPL), January 2005.

[18] P. Godefroid. Model checking for programming languages using VeriSoft. In Principles of
Programming Languages (POPL), January 1997.

[19] S. Graf and H. Saidi. Construction of abstract state graphs with PVS. In Computer Aided
Verification (CAV), June 1997.

[20] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney. Region-based memory
management in Cyclone. In Programming Language Design and Implementation (PLD1),
June 2002.

[21] T. A. Henzinger, R. Jhala, and R. Majumdar. Lazy abstraction. In Principles of Programming
Languages (POPL), January 2002.

[22] D. Jackson. Software Abstractions: Logic, Language, and Analysis. MIT Press, 2006.

123] D. Jackson and C. Damon. Elements of style: Analyzing a software design feature with
a counterexample detector. IEEE Transactions on Software Engineering (TSE) 22(7), July
1996.

[24] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, 2000.

[25] S. Khurshid and D. Marinov. TestEra: Specification-based testing of Java programs using
SAT. In Automated Software Engineering (ASE), November 2001.

[26] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution for model
checking and testing. In Tools and Algorithms for Construction and Analysis of Systems
(TACAS), April 2003.

[27] R. Kurshan. Computer-Aided Verification of Coordinating Processes: The Automata-
Theoritic Approach. Princeton University Press, 1999.

[28] B. Liskov and J. Guttag. Abstraction and Specification in Program Development. MIT Press,
1986.

[29] D. Marinov, A. Andoni, D. Daniliuc, S. Khurshid, and M. Rinard. An evaluation of exhaustive
testing for data structures. Technical Report TR-921, MIT Laboratory for Computer Science,
September 2003.

[30] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. Dill. CMC: A pragmatic
approach to model checking real code. In Operating System Design and Implementation
(OSDI), December 2002.

[31] A. C. Myers. JFlow: Practical mostly-static information flow control. In Principles of Pro-
gramming Languages (POPL), January 1999.

[32] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer Verlag, 2002.

[33] T. Nipkow and D. von Oheimb. Java light is type-safe—definitely. In Principles of Program-
ming Languages (POPL), January 1998.

[34] J. Offutt and R. Untch. Mutation 2000: Uniting the orthogonal. In Mutation 2000: Mutation
Testing in the Twentieth and the Twenty First Centuries, October 2000.

[35] B. C. Pierce. Types and Programming Languages. MIT Press. 2002.

[36] M. Roberson. Glass box software model checking. Ph.D. thesis, University of Michigan,
Expected in May 2011.

[37] M. Roberson and C. Boyapati. Efficient modular glass box software model checking. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), October
2010.

[38] M. Roberson, M. Harries, P. T. Darga, and C. Boyapati. Efficient software model checking
of soundness of type systems. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 2008.

[39] M. Said, L. Wang, Z. Yang, and K. Sakallah. Generating data race witnesses by an SMT-
based analysis. In NASA Formal Methods Symposium (NFM), April 2011.

[40] The Sustainable Computing Consortium, http://www.sustainablecomputing.org.

[41] W. Visser, K. Havelund, G. Brat, and S. Park. Model checking programs. In Automated
Software Engineering (ASE), September 2000.

[42] D. Walker. A type system for expressive security policies. In Principles of Programming
Languages (POPL), January 2000.

[43] G. Winskel. The Formal Semantics of Programming Languages. MIT Press, 1993.

[44] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. In Information and
Computation 115(1), November 1994.

[45] Z. Yang, B. Al-Rawi, K. Sakallah, X. Huang, S. A. Smolka, and R. Grosu. Dynamic path
reduction for software model checking. In International Conference on Integrated Formal
Methods (IFM), February 2009.

[46] Z. Yang and K. Sakallah. SMT-based symbolic model checking for multi-threaded programs.
In CAV Workshop on Exploiting Concurrency Efficiently and Correctly (EC2), July 2008.

[47] Z. Yang and K. Sakallah. Trace-driven verication of multithreaded programs. In International
Conference on Formal Engineering Methods (ICFEM), November 2010.

8

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this coBection of information, including
suggestions for reducing the burden, to the Department of Defense. Executive Service Directorate (0704-0188) Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

02-28-20ll
2. REPORT TYPE

Final Report
3. DATES COVERED (From - To)

01-12-1006 to 30-11-2010

4. TITLE AND SUBTITLE
Program Analysis Techniques for Efficient Software Model Checking

5a. CONTRACT NUMBER

5b. GRANT NUMBER

FA9550-07-1-0077

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Chandrasekhar Boyapati
Karem Sakallah

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

University of Michigan

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Office of Scientific Research

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for Public Release

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The need to build next generation air force systems with highly complex functions, but at relatively low cosL will inevitably means a major
investment in software. Without highly reliable software, any ambitious air force program cannot succeed. Indeed, software is the keystone (or
perhaps the Achilles heel) of most large-scale automation projects: and the problem of making software reliable has become one of today's most
important technological challenges.

To address this problem and to improve software reliability, we designed novel program analysis techniques that significantK speed up software
model checking, thereby enabling the checking of much larger programs and broader class of program properties than previously possible.

15. SUBJECT TERMS

Software Model Checking

16. SECURITY CLASSIFICATION OF:
a. REPORT

u
b. ABSTRACT

U

c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON
Chandrasekhar Boyapati

19b. TELEPHONE NUMBER (Include area code)

734-763-9015
Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std Z39 18
Adobe Professional 7 0

INSTRUCTIONS FOR COMPLETING SF 298

1. REPORT DATE. Full publication date, including
day, month, if available. Must cite at least the year and
be Year 2000 compliant, e.g. 30-06-1998; xx-06-1998;
xx-xx-1998.

2. REPORT TYPE. State the type of report, such as
final, technical, interim, memorandum, master's thesis,
progress, quarterly, research, special, group study, etc.

3. DATES COVERED. Indicate the time during which
the work was performed and the report was written,
e.g., Jun 1997 - Jun 1998; 1-10 Jun 1996; May - Nov
1998; Nov 1998.

4. TITLE. Enter title and subtitle with volume number
and part number, if applicable. On classified
documents, enter the title classification in parentheses.

5a. CONTRACT NUMBER. Enter all contract numbers
as they appear in the report, e.g. F33615-86-C-5169.

5b. GRANT NUMBER. Enter all grant numbers as
they appear in the report, e.g. AFOSR-82-1234.

5c. PROGRAM ELEMENT NUMBER. Enter all
program element numbers as they appear in the report,
e.g.61101A.

5d. PROJECT NUMBER. Enter all project numbers as
they appear in the report, e.g. 1F665702D1257; ILIR.

5e. TASK NUMBER. Enter all task numbers as they
appear in the report, e.g. 05; RF0330201; T4112.

5f. WORK UNIT NUMBER. Enter all work unit
numbers as they appear in the report, e.g. 001;
AFAPL30480105.

6. AUTHOR(S). Enter name(s) of person(s)
responsible for writing the report, performing the
research, or credited with the content of the report. The
form of entry is the last name, first name, middle initial,
and additional qualifiers separated by commas, e.g.
Smith, Richard, J, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND
ADDRESS(ES). Self-explanatory.

8. PERFORMING ORGANIZATION REPORT NUMBER.
Enter all unique alphanumeric report numbers assigned by
the performing organization, e.g. BRL-1234;
AFWL-TR-85-4017-Vol-21 -PT-2.

9. SPONSORING/MONITORING AGENCY NAME(S)
AND ADDRESS(ES). Enter the name and address of the
organization(s) financially responsible for and monitoring
the work.

10. SPONSOR/MONITOR'S ACRONYM(S). Enter, if
available, e.g. BRL, ARDEC, NADC.

11. SPONSOR/MONITOR'S REPORT NUMBER(S).
Enter report number as assigned by the sponsoring/
monitoring agency, if available, e.g. BRL-TR-829; -215.

12. DISTRIBUTION/AVAILABILITY STATEMENT. Use
agency-mandated availability statements to indicate the
public availability or distribution limitations of the report. If
additional limitations/ restrictions or special markings are
indicated, follow agency authorization procedures, e.g.
RD/FRD, PROPIN, ITAR, etc. Include copyright
information.

13. SUPPLEMENTARY NOTES. Enter information not
included elsewhere such as: prepared in cooperation
with; translation of; report supersedes; old edition number,
etc.

14. ABSTRACT. A brief (approximately 200 words)
factual summary of the most significant information.

15. SUBJECT TERMS. Key words or phrases identifying
major concepts in the report.

16. SECURITY CLASSIFICATION. Enter security
classification in accordance with security classification
regulations, e.g. U, C, S, etc. If this form contains
classified information, stamp classification level on the top
and bottom of this page.

17. LIMITATION OF ABSTRACT. This block must be
completed to assign a distribution limitation to the abstract.
Enter UU (Unclassified Unlimited) or SAR (Same as

Report). An entry in this block is necessary if the abstract

is to be limited.

Standard Form 298 Back (Rev 8/98)

